Semimartingale approximation of fractional Brownian motion and its applications

نویسنده

  • Nguyen Tien Dung
چکیده

The aim of this paper is to provide a semimartingale approximation of a fractional stochastic integration. This result leads us to approximate the fractional Black-Scholes model by a model driven by semimartingales, and a European option pricing formula is found. 2000 AMS Classification: 60H05, 65G15, 62P05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doubly Perturbed Neutral Stochastic Functional Equations Driven by Fractional Brownian Motion

In this paper, we study a class of doubly perturbed neutral stochastic functional equations driven by fractional Brownian motion. Under some non-Lipschitz conditions, we will prove the existence and uniqueness of the solution to these equations by providing a semimartingale approximation of a fractional stochastic integration. AMS Subject Classifications: 60H15, 60G15, 60H05 Chinese Library Cla...

متن کامل

Mackey-Glass equation driven by fractional Brownian motion

In this paper we introduce a fractional stochastic version of the MackeyGlass model which is a potential candidate to model objects in biology and finance. By a semimartingale approximate approach we find a semi-analytical expression for the solution.

متن کامل

Approximation at First and Second Order of m-order Integrals of the Fractional Brownian Motion and of Certain Semimartingales

Let X be the fractional Brownian motion of any Hurst index H ∈ (0, 1) (resp. a semimartingale) and set α = H (resp. α = 12). If Y is a continuous process and if m is a positive integer, we study the existence of the limit, as ε→ 0, of the approximations Iε(Y,X) := {∫ t 0 Ys ( Xs+ε −Xs εα )m ds, t ≥ 0 } of m-order integral of Y with respect to X. For these two choices of X, we prove that the lim...

متن کامل

Stochastic calculus with respect to fractional Brownian motion

— Fractional Brownian motion (fBm) is a centered selfsimilar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1/2, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô...

متن کامل

Is the Driving Force of a Continuous Process a Brownian Motion or Fractional Brownian Motion?

Itô’s semimartingale driven by a Brownian motion is typically used in modeling the asset prices, interest rates and exchange rates, and so on. However, the assumption of Brownian motion as a driving force of the underlying asset price processes is rarely contested in practice. This naturally raises the question of whether this assumption is really appropriate. In the paper we propose a statisti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2011